Computing the Number of Faces of Transportation Polytopes in Polynomial Time
نویسنده
چکیده
Deene transportation polytope Tn;m to be a polytope of nonnegative n m matrices with row sums equal to m and column sums equal to n. We present an eecient algorithm for computing the numbers f k of the k-dimensional faces for the transportation polytope T n;n+1. The construction relies on the new recurrence relation for the numbers f i , which is of independent interest.
منابع مشابه
Transportation Problems and Simplicial Polytopes That Are Not Weakly Vertex-Decomposable
Provan and Billera defined the notion of weak k-decomposability for pure simplicial complexes in the hopes of bounding the diameter of convex polytopes. They showed the diameter of a weakly k-decomposable simplicial complex ã is bounded above by a polynomial function of the number of k-faces in ã and its dimension. For weakly 0-decomposable complexes, this bound is linear in the number of verti...
متن کاملComputing All Faces of the Minkowski Sum of V-Polytopes
We consider the problem of listing faces of the Minkowski sum of several V-polytopes in R. An algorithm for listing all faces of dimension up to j is presented, for any given 0 ≤ j ≤ d − 1. It runs in time polynomial in the sizes of input and output.
متن کاملComputing faces up to k dimensions of a Minkowski Sum of Polytopes
We consider the problem of listing faces of the Minkowski sum of several V-polytopes in R. An algorithm for listing all faces of dimension up to j is presented, for any given 0 ≤ j ≤ d − 1. It runs in time polynomial in the sizes of input and output.
متن کاملComputing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G) euv nu (e) nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...
متن کاملThe Neighbourhood Polynomial of some Nanostructures
The neighbourhood polynomial G , is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph. In other word $N(G,x)=sum_{Uin N(G)} x^{|U|}$, where N(G) is neighbourhood complex of a graph, whose vertices are the vertices of the graph and faces are subsets of vertices that have a common neighbour. In this paper we compute this polynomial for some na...
متن کامل