Computing the Number of Faces of Transportation Polytopes in Polynomial Time

نویسنده

  • Igor Pak
چکیده

Deene transportation polytope Tn;m to be a polytope of nonnegative n m matrices with row sums equal to m and column sums equal to n. We present an eecient algorithm for computing the numbers f k of the k-dimensional faces for the transportation polytope T n;n+1. The construction relies on the new recurrence relation for the numbers f i , which is of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transportation Problems and Simplicial Polytopes That Are Not Weakly Vertex-Decomposable

Provan and Billera defined the notion of weak k-decomposability for pure simplicial complexes in the hopes of bounding the diameter of convex polytopes. They showed the diameter of a weakly k-decomposable simplicial complex ã is bounded above by a polynomial function of the number of k-faces in ã and its dimension. For weakly 0-decomposable complexes, this bound is linear in the number of verti...

متن کامل

Computing All Faces of the Minkowski Sum of V-Polytopes

We consider the problem of listing faces of the Minkowski sum of several V-polytopes in R. An algorithm for listing all faces of dimension up to j is presented, for any given 0 ≤ j ≤ d − 1. It runs in time polynomial in the sizes of input and output.

متن کامل

Computing faces up to k dimensions of a Minkowski Sum of Polytopes

We consider the problem of listing faces of the Minkowski sum of several V-polytopes in R. An algorithm for listing all faces of dimension up to j is presented, for any given 0 ≤ j ≤ d − 1. It runs in time polynomial in the sizes of input and output.

متن کامل

Computing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes

The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G)  euv nu (e)  nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...

متن کامل

The Neighbourhood Polynomial of some Nanostructures

The neighbourhood polynomial G , is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph. In other word $N(G,x)=sum_{Uin N(G)} x^{|U|}$, where N(G) is neighbourhood complex of a graph, whose vertices are the vertices of the graph and faces are subsets of vertices that have a common neighbour. In this paper we compute this polynomial for some na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999